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ON CONSTRUCTION OF APPROXIMATE SOLUTIONS OF
EQUATIONS OF THE SHALLOW SPHERICAL SHELL*

I. N. VEKUA

University of Tbilisi

Abstract-The new theory of the elastic shells leads to the elliptic system ofequations of the 12th order (see I. N.
Vekua, The Theory a/Thin Shallow Shells with Variable Thickness, Tbilisi, Metsniereba, 1965), In the case of the
spherical shell, the solutions of this system of equations may be exactly expressed by six functions Wi satisfying the
equations of the form V2 w+kfw = 0 (i = 1,2,3,4,5) where kI, kL ki, k; are real constants, ki is a complex
constant, WI' W2' WO<' Ws are real-valued functions, and W3 is a complex-valued function. These functions are
expressed by six arbitrary analytic functions of one complex variable. For the shallow spherical shells the obtained
formulae may be essentially simplified. The same method may be also used for the simplification of the. equations
of the shallow cylindrical shells.

I

WE SHALL consider the version of the theory of elastic shells according to which the dis­
placement vector V(x l

, Xl, x3
) of the point (Xl, Xl, x3

) ( - h :$ x3 :$ h), 2h is the thickness
of the shell, and the stress force p(l)(Xt, Xl, x3) acting on the cross section LI with the unit
normal 1 are expressed by the following formulae (Approximations of the order N = 1;
see [1,2])

(1)

(2)

or

(3)

(5)

(4)

Here n(x t
, Xl) and vex!, Xl) are the vector fields on the middle surface x3 0, T(/) is

the stress resultant, M(l) is the stress couple, Q(l) is the force ofthe self-equilibrated transverse
couple (Q(/)n, Q(I)n) (see Fig. 1); n is the unit normal to the middle surface x3 0

In the case of the shallow or thin shell T(I) and 8(/) are expressed by n and v by means of
the following formulae:

T(/) = 2h[A( (za ::a) + (nv»)1+ /l ~1+ /l(1::a) za + /l(lv)nJ
4(h)l[ (ov) ov (ov) J8(/) = -- .Ie za_ I+/l-+/l 1- za3 oxa o[ oxa '

* Presented at the 12th International Congress of Applied Mechanics, Stanford, California, August 1968.
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FIG. I.

where Aand J1 are Lame's constants,

A = E(J
(1 + (J)(I- 2(J)'

(6)

Here E is Young's modulus and (J is Poisson's ratio; Zl, Zl are the conjugate basic vectors
of the coordinate system Xl, Xl on the middle surface x3 = O.

II

The above suggested scheme of distribution of stresses and strains in the shell leads to
the elliptic system of differential equations of the twelfth order (see [1,2]). For plates and
spherical shells with constant thicknesses all solutions of these equations may be repre­
sented by formulae which contain six arbitrary analytic functions of one complex variable.
This fact allows us to apply the theory of analytic functions to static problems of elastic
piates and spherical shells (see [1-3]).

In the case of the plate these formulae have comparatively simple structure. The similar
forms have also the formulae for spherical shells (see [1]). But the dependence on arbitrary
analytic functions is realised there by means of some integral transformations and due to
this the application of these formulae is considerably complicated. Besides the main terms,
defining the essential parts of the stress-strain distribution picture, the formulae contain
many insignificant ones which cause different mathematical complications. Therefore it is
practically very important to simplify beforehand the system of equations neglecting the
small quantities which have no essential mechanical influence on the picture of stress­
strain distribution. For this purpose one can suggest different approaches (see [1,5]). It is
worth noting that, in general, the different ways lead to different results. Below we shall
apply an approach for simplification of the system of equations of the shallow spherical
shell. We shall also use the method of expansion ofsolutions in the power series with respect
to the small parameter

2h
e=/i..' (7)

where R is the radius of the sphere. This method allows the reduction of static problems for
elastic spherical shells to the sequences ofsimilar problems for the elastic plate, the thickness



On construction of approximate solutions of equations of the shallow spherical shell 993

of which is equal to 1. It is worth noting that similar approaches may be also used for any
shell, e.g. for cylindrical ones.

III

Let us consider the isometric coordinates on the sphere

f)
~ = tg2cos cp,

f) .
'1 = tg2sm cp,

where f) and cp are the geographical coordinates. For the shallow spherical shell the co­
ordinate f) varies inside the small segment: °~ f) ~ f)o. Therefore one can put

e= te cos cp, '1 = if) sin cpo

Further it will be more convenient to consider the following new coordinates

R
x = 2h f) cos cp,

R f) .
y = 2h sm cpo (8)

Then for the metric quadratic form we obtain the formula

where

(9)

z=x+iy, z=x-iy.

Now the system of equations of the elastic shell may be written in the following complex
form (see [1, 2J)

a a
oz (Tt - Tz + 2iS) + oz(Tt + Tz)-e(N t + iNz)+ Xl +iXz = 0,

(10)

where X t , X z and X are components of external loads,

. oWt
T1 - Tz + 21S = 4J1 OZ '

f) _ OUt OUz
t - ax + oy'

(11 )
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( \1)

o 1(0 D)Jj)~ = 2: ex +i oy .

Here we use the following notation: T1 and T2 are the normal forces, S is the shearing force,
M 1 and M 2 are the bending moments, H is the twisting moment, N 1 and N 2 are the trans­
verse forces, Sl and S2 are connected with the so called splitting forces Q1 and Q2 by the
formulae (see [1,2])

(12)

Further

(13)

(14)

(15)

f) =~U1+aU2=DW1+0W1
1 ax oy oz oz'

e = ~~+ aV2 = oW2+aW2

2 ax ay oz OZ'

where u1, U2 and VI' V2 are the tangent components of the vectors u and v, respectively;
u and V denote the normal components ofthese vectors. We propose that the unit normal n
to the sphere is directed to the centre.

By substituting (11) into (10) we obtain the elliptic system of equations of the twelfth
order which may be written with respect to the real variables x and y in the following
form

ae1 av ( au)fl,1u 1+(A +fl)~+ Aax -I: flV l + (2A +3fl) ex - e
2

f1u1+X 1 = 0,

ae l ev ( " au) 2fl,1U2+(A+fl)ay+A
ey

-e f1v2+(2Ji.+3f1)oy -e flU2+X2 = 0,

f1,1u + fle2+e[2Av +(2A +3f1)e I] - 4e2(A + f1)u + X = 0,

ae2 (au ) ( av) 2fl,1V1+(A+fl)~-12fl ax +V1 -e 12f1ul+(2A.+3/.1)ex -e f1v l = 0,

ae2 (au ) ( av) 2fl,1V2 +(A + f1)ay - 12fl ay+ v2 - e 12f1U 2 + (2A. + 3/.1) oy - e f1 V 2 = 0,

fl,1v -12[Ae1+(A +2fl)v] +e[24Au + (2A +3fl)82] - 4e2(A +J!)v = 0.

(16)
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It is easy to derive the formulae expressing all solutions of this system by six functions
satisfying the equations of the form

(K Z = const)

But it is more convenient to use a procedure based on the power series expansions
with respect to the small parameter G.

IV

If G = 0 then we obtain two independent systems of equations which may be written in
the following form

a0 1 av
p,/),u 1 +(2+p,)ax+)-ax +X 1 = 0,

ao 1 av
p,/),uz+(2+p,)--+).-+X1 = 0,

ay ay

p,/),v-12[).Ol +(2 + 2p,)vJ = o.

aoz (au )p,/),v 1 +(2+p,) ax -12p, ax +v 1 = 0,

a01 (au )p,/),v1 +(2+p,)ay--12p, ay+vz =0,

P,/),U+p,0l+X = O.

(17)

(18)

These systems of equations coincide with those for the plate the thickness of which is
equal to 1 (see [1, 2J). Therefore one can write down the formulae expressing in the exact
form all solutions of equations (17) and (18) by means of arbitrary analytic functions.

For equations (17) these formulae may be written in the following form (see [1,2])

au au* 0
U 1 = ax -~+Ul'

au au* 0
U z = ay + ax +Uz ,

v = __ a_/), U _ 1- 2a/),/), U +VO

1- a 24a '

where u~, ug, VO is a particular solution of the non-homogeneous equations (17),

a I-a --
U = - 24X+ 2(1 +a)[zf' -(z)+zf'(z)-t(f~(z)+f~(z))J,

i -
U* = -1-[zf'(z)-zf'(z)].+a .

(19)

(20)

(21)

(22)
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(24)

(23)

Herefo and fare the arbitrary analytic functions of z and Xis the arbitrary real solution of
the equation

24
Ax- 1_

r
,x = O.

All solutions of equation (23) may be represented by the formula (see [4J)

X= Re~l(Z)- s: f1(t):?0{K 1J[Z(Z-t)J}dt} (Ki = 1~;)'

where f1 is the arbitrary analytic function of z, 10 is the Bessel function of zero order with
the imaginary argument.

Therefore the formulae expressing all solutions of equations (t 7) contain three arbitrary
analytic functions fo ,f, f1 .

Sometimes it is more convenient to represent the funcdon U in the following form

U= AO,

where

- <1(1 - (1) 1- <1 21 2 .1'
U = - 576 X+16(1 + (1)[z +z !-z}o-zfo].

Formulae (20) may also be written in the form

2<1
v = X- 1+ /f" +.f").

All solutions of equation (18) may be represented by the formulae

av at/!
V 1 = ----,ex ay

av at/!
V2 = -+-;;-,oy ex

2(1 + (1)B
u = - V+-----AVE '

where Vand t/! are the arbitrary solutions of the equations

1
!1AV = -aX,

At/J- t2t/! = o.
Here

The function V may be expressed by the formula

V = 8[zg'(z) + zg'(z)J +4[go(z)+ go(z)J + VO,

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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where go and gl are the arbitrary analytic functions and VO is a particular solution of
equation (29).

Sometimes it is convenient to represent the function V in the form

V = ~V+ yO, (33)

where

V = Z2g(Z) + Z2g(Z) + zgo(z) + zgo(z).

All solutions of equation (30) may be represented by the formula

IjJ = Re[gl(Z)- J: gl(t) :t Io{J[12z(z-t)]} dtJ.

(34)

(36)

Therefore the formulae representing solutions of equations (18) contain also three arbitrary
analytic functions.

v
Let us return now to equations (16) and try to construct the solutions of the form

00 00

U= I u(K)eK, u = L u~K)eK (ex = 1,2),a
K=O K=O

00 00
(35)

V= I v(K)eK, V = L v~K)eK (ex = 1,2).a
K=O K=O

We suppose that u~O), u(O), v~O), v(O) is an arbitrarily given solution of equations (17)
and (18) which may be constructed by means of the formulae given in the previous section.
The formal substitution of(35) into (16) shows that the series (35) may satisfy equations (16)
if the following equations are fulfilled

OO(K) OV(K)
Ji~U1K)+(A+Ji) o~ +A~+X1K) = 0,

OO(K) OV(K)
Ji~U~K)+(A+ Ji) o~ +Aay+ X~K) = 0,

Ji~V(K) -12[A01K) +(A +2Ji)P<K)J +X~K) = 0,

OO(K) ( OU(K) )
Ji~v(K)+(A+Ji)-2--12Ji __+V(K) +X(K) = °

1 ox OX 1 4 ,

OO(K) (OU(K) )
Ji~V~K)+(A+Ji)-2--12Ji __ +V~K) +X~K) = 0,

oy oy
Ji~U(K) +JiO<f) + X~K) = 0,

(K = 1,2, ... ),

(37)
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where

X (K) ­
1 -

X (K) ­
2 -
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;:; (K I)
(K-l) (2' 3 )eu (K-2)

IWI -. 11.+ f..l --;:;·--f..lu1 '
LX

rl (K'll
(K-l) (2' 3 )eu (K 2)f..lv2 - A + f..l".~--- - f..lU2

cy

X~K) = 24ilu(K - 1) + (22 + 3f..l)O~K - 1) - 4(), + f..l)ll(K - 2>,
'"1 (K _. I)

Xlf) = 12f..lu\K - I) - (2). + 3f..l/~;;;-- f..lV\K - 2>,
ex

X~K) = 2ilv(K-l)+(2).+3f..l)O\K-I)-4(il,+f..l)U(K- 21,

(K = 1,2, ... ; U(K) = V(K) U;K) = V;K) = 0, if K < 0; :J. = 1,2).

(38)

For each fixed K equations (36) and (37) coincide with equations (17) and (18), respectively.
Therefore to equations (36) and (37) one can apply the methods of integration stated in the
previous section.

Suppose that we consider some linear boundary value problem A. for equations (16).
The corresponding boundary value problem for equations (17) and (18) will be denoted by
Ao. We shall also suppose that the right side parts of the boundary conditions do not depend
on the parameter s. It means that for problems A, and An these ones are the same.

Let dO), dO), u\O), u~O), v\o>, v~O) be the solution of the problem Ao. If the series (35) repre­
sent the solution of the boundary value problem At' then the solutions of equations (36)
and (37) are to satisfy the corresponding homogeneous boundary conditions. Therefore
the boundary value problem At for the elastic spherical shell is reduced to the sequence of
the boundary value problems for the non-homogeneous systems of equations (36) and
(37) of elastic plates with homogeneous boundary conditions. Using the formulae of
section IV the latter boundary value problems may be reduced to the problems for analytic
functions of one complex variable. It is worth noting that all these problems are of the same
type and may be solved using the method requiring repetitions of calculations of the same
kind.

VI

For the shallow shell the parameter s is very small and one can neglect the terms of
orders smlm ~ 21. Therefore the sought solution has the form

u = u(O) +su(l),

V = VIO) +sdl),

u1 = u\O)+su\ll,

VI = v\O) +ev\l),

U2 = u~O) + W~ll,

V2 = v~O)+svf 1.

(39)

We assume that dO), ViOl, u\°l, u~O), v\O), l1~O) is the known solution of the boundary value
problem A o.
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According to (36H38) we will have the equations
00(1) OV(l)

pAU\1)+(A+p) a~ +,1, ox +X\l) = 0

oeO) OV(l)
pAU~l)+(A+p) o~ +,1,ay+X~l) = 0

pAv(1) 12(,1,OO)+(,1,+2p)v(l))+X~1) = 0

oe(1) (OUO
) )pAv(1)+(,1,+p)-2-- 12p __+V\l) +x:/) = 0,

1 ax ax
ae(l) (oull) )pAV(l)+(A+ p)_2__ 12p -~-+v~l) +X~l) = 0

2 oy oy .'

pAul l) + pe~1) + X~l). = 0,

where

(40)

(41)

(43)

(42)
ou(O)

X~l) = -(2,1,+3p)---pv~0J,
oy

X~l) = 24,1,v(0)+(2A+3p)(J~0),

av(O)
X~l) = -(2,1,+3p)- 12pu\°1,ax

av(O)
X~1) = (2,1,+3p)ay-12pu~0),

X~l) = 2,1,v(0) + (2A + 3p)8\O),

(
ouO) ou(l) avO) avO»)O(l) = __1 +_2_ e~l) = _l_+_~ .

1 ox oy' ox oy

We shall suppose that the external loads are absent, i.e. X 1 X 2 = X = O. The general
case may be always reduced to this special one. Therefore one can put u? = u~ = UO = 0,
VO = 0 and according to the formulae of section IV, the solution of the problem Ao may
be represented in the following form

u(O) _ oAU _ au* (0) oAU au*
1 - ax ay , U2 = ay + ax '

(1 - 1-2(1 _
dO) = --AAU ---AAAU

I-fT 24fT '

(0) _ aAV _ at/! (0) _ oAV at/!
V1 - ox ay' V2 -a:v+ax'

u(O) = AV + 2(1 +a)B AAV
E '

(44)

(45)
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where
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o - _a(1-a)_ 1- a 2 -2_
- 576 x+ 16(1 +a)(z l+zf zJo-z!o),

i
U* = 1+a (zf' - zf'),

(46)

(47)

(48)

(49)

Here!o,f, go, g are analytic functions, X and I/J are solutions of equations (23) and (30).
According to (42) and (45) one can write

(1) 0 - - OJ11/J
Xl = ~-(aOLlV+aILlLlV)+~,

ux uy

(I) D - - DJ11/JX 2 =;;--(aOLlV+aILlLlV)---,
oy ax

X~I) = boLlV +bILlLlV.

(1 (j - - - a
X 4 ) =--(coLlU +c'ILlLlU +C2LlLlLlU)+~.-(12J1U*)'ax uy

(I) (j ""' - - aX s = -;;-(CoLlU +CILlLlU +C2LlLlLlU)---(12j1U*),
oy ax

X~I) = doLlLl0 +d I LlLlLlU .

where

(50)

ao = 2(A + J1),

Co = -12j1,

2(2Jc + 3j1)(1 + a)B

E

48Jc(1 + a)B
b l = U+3J1+--E --,

(2Jc+3J.l)(1-2a)
C2 = 24(J

(51)

),(1 - 2a)
d = -------

I 12(J'

One can easily find out that a particular solution of nonhomogeneous equations (40)
and (41) may be represented by the formulae

(I)' a ,- ,- 1 ol/J
U l = -;;-. (aoV +atLlV)- 2-;-'

uX 1 uy

(I)' a ,- ,- 1 EJI/J
U 2 = -;;-. (aoV +a tLlV)+1-2 ;-,

try . uy
(52)
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a - - - o( l A )v(~)' = o)c~U +c'IAU +c~AAU)+ oy U*+ 12 L1U* '

, a 0 - - a( 1 A ) (53)
V~I) = oy (c~ +c'IAU +c~AAU)+ ox U*+ 12 L1U* '

dO)' = d~O+d'IAO +d~AAO,

a~ = -(1+0-);
a

'
_ 6 - 131T + 51T2+ 41T4

I - 24(1- 21T)2

b~ = -IT,
b' _ 3 -71T + 101T2- 81T3

I - 24(1 _ 21T)2 '

I I 2(1-21T) I 2-91T+61T2

Co = -do = - (1-1T)2' CI = 2(1-1T)2 '

I (3 - 21T)(1 - 21T)
C2 = 241T

d' _ _ 8 - 291T + 301T2+ 81T 3

I - 2(1-1T)2(1 - 21T) ,

d' _ _ 3 - 121T + 41T2

2 - 241T

(54)

If we now add to the particular solutions (52) and (53) of equations (40) and (41) the
general solutions of the corresponding homogeneous equations, we obtain the formulae

U(II) _ oW oW* (I)'
-~-ay-+UI ,

(1) _ oW oW* (I)'
U2 - ay+~+U2 '

V(1) = __IT_ AW _ 1-21T AAW +V(O)'
I-IT MIT '

(55)

(56)
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where
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i _
W = ~---(zcP-zcP),

* 1+a
(57)

Z = zifi + z\l' + \I' 0 + ifio.

Here cPo, cP, \1'0 and \I' are the arbitrary analytic functions of z, <p and ware the arbitrary
real solutions of equations

24
t1<p - --<p = 0,

I-a
/1w-12w = O.

We are to mention that functions u~l)', u~l)', U(ll', v\l)', V~I)', v(1l' are known since they
are expressed by the solution of the boundary value problem Ao (we have supposed that
the solution of this problem is known), Therefore each of formulae (55) and (56) depend on
the three arbitrary analytic functions.

It is obvious that the homogeneous boundary conditions for functions u\l), u~l), u(l),

v\l), V~I), v(l) will be reduced to the definite non-homogeneous boundary conditions for
analytic functions contained in formulae (55) and (56).

There exists a wide class of boundary value problems for which the corresponding
boundary conditions are separated into two groups in the following manner. One group
of boundary conditions contains three functions uI, U2' v and the other one contains
VI' V2, u. The boundary value problems of this kind, if we are to find the approximate solu­
tions of the form (39), are split into two independent boundary value problems. Each of
them is reduced to the boundary value problem for three analytic functions. This fact,
obviously, facilitates the necessary mathematical calculations.

If we use the formulae giving representations of solutions of the initial equations of the
spherical shell, we obtain the boundary conditions which contain all six analytic functions.
These boundary value problems do not split, in general, into independent ones with less
than six sought analytic functions.
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A6cTpaKT-HoBali TeOpHli ynpymx 060JIO'leK npHBO):lHT K CHCTeMe 3JIJIHnTH'IeCKHX ypaBHeHHH ):IBeHa):lI.\a­

Toro nOpll):lKa ICM. 11. H. BeKya "TeopHli TOHKHX rroJIomx 060JIO'leK rrepeMeHHOH TOJIll.\HHbl". Tp. T6HJIHCK.

MaT. HH-Ta AH rpy3 CCP, 19651. )J,JIli CJIy'lali cl}IepH'IeCKOH 060JIO'lKH, perueHHlI 3THX CHCTeM ypaBHeHHH

MOlKHO TO'lHO rrpe):lCTaBHTb B BH):Ie lllecTH <!>YHKI.\HH, y):lOBJIeTBOplilOll.\HX ypaBHeHHlIM THrra V2w+k,ow = 01
i = 1,2,3,4,51, r):le COOTBeTCTBeHHO k 1

2
, k 2

2
, k.2

, k?-):IeHCTBHTeJIbHble nOCTOllHHble, k 3
2-KOMrrJIeKCHali

nOCTOllHHall, WI, W2, W., Ws-):IeHCTBHTeJIbHble <!>YHKI.\HH, W3-KOMnJIeKCHali <!>YHKl.\HlI. 3TH <!>YHKI.\HH

MOlKHO Bblpa3HTb ruecTblO npOH3BOJIbHbIMH aHaJIHTH'IeCKHMH <!>YHKI.\HlIMH O):lHOi!: KOMnJIeKCHOH rrepeMOH­

HOH. )J,JIli nOJIOrHX c<!>epH'IeCKHX 060JIO'leK nOJIy'leHHble <!>OPMYJIbI 3Ha'lHTeJIbHO yrrp0ll.\aIOTcli. TOTlKe

MeYO):l MOlKHO, TaKlKe, HCrrOJIb30BaTb ):IJIli perueHHlI ynp0ll.\eHHbIX ypaBHeHHH nonorHX c<!>epH'leCKHX

060JIO'leK.


