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ON CONSTRUCTION OF APPROXIMATE SOLUTIONS OF
EQUATIONS OF THE SHALLOW SPHERICAL SHELL*

L. N. VEkua
University of Thilisi

Abstract—The new theory of the elastic shells leads to the elliptic system of equations of the 12th order (see I. N.
Vekua, The Theory of Thin Shallow Shells with Variable Thickness, Tbilisi, Metsniereba, 1965). In the case of the
spherical shell, the solutions of this system of equations may be exactly expressed by six functions w, satisfying the
equations of the form Viw+kiw =0 (i = 1,2,3,4,5) where &%,k3,k2,k? are real constants, k3 is a complex
constant, w;, w,, w4, ws are real-valued functions, and w, is a complex-valued function. These functions are
expressed by six arbitrary analytic functions of one complex variable. For the shallow spherical shells the obtained
formulae may be essentially simplified. The same method may be also used for the simplification of the equattons
of the shallow cylindrical shells.

1

WE SHALL consider the version of the theory of elastic shells according to which the dis-
placement vector U(x', x, x*) of the point (x', x2, x*) (—h < x> < h), 2h is the thickness
of the shell, and the stress force P (x*, xZ, x*) acting on the cross section T, with the unit
normal 1 are expressed by the following formulae (Approximations of the order N = 1;
see [1,2))

3

- UxY, x3,x%) = u(x’,x")-i-%v(x’,xz), H
P.(xl x2 x? 1 p oy, X 1 L2
a(x, x4, x%) = ﬁTm(X » X )'*‘WSU)(X , X%, (2)
or
1 3x? 2x?
Pa) = ﬁ;T(l)—'—WMU) X l1+(~ﬁ)3Q(,)n. (3)

Here u(x', x?) and v(x*, x) are the vector fields on the middle surface x* = 0, Ty is
the stress resultant, M, is the stress couple, Q,,, is the force of the self-equilibrated transverse
couple (Qyyn, —Qqn) (see Fig. 1); n is the unit normal to the middle surface x3 = 0

In the case of the shallow or thin shell T, and S, are expressed by u and v by means of
the following formulae:

G,
Ty = 2}{'{((#5&) +(ﬂ"))l+ﬂ%‘?+ #(l%) z“+u(lv)n], ()
4(h)? i} 0
Sy = (3) [2(z’5;)l+u%+y(l§;)z“], )

* Presented at the 12th International Congress of Applied Mechanics, Stanford, California, August 1968.
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992 1. N. VEKuA

where A and y are Lamé’s constants,

Eo E

A= ST ©

(L+0)(1-20)’
Here E is Young’s modulus and ¢ is Poisson’s ratio; z', z* are the conjugate basic vectors
of the coordinate system x!, x* on the middle surface x* = 0.

I

The above suggested scheme of distribution of stresses and strains in the shell leads to
the elliptic system of differential equations of the twelfth order (see [1, 2]). For plates and
spherical shells with constant thicknesses all solutions of these equations may be repre-
sented by formulae which contain six arbitrary analytic functions of one complex variable.
This fact allows us to apply the theory of analytic functions to static problems of elastic
plates and spherical shells (see [1-3]).

In the case of the plate these formulae have comparatively simple structure. The similar
forms have also the formulae for spherical shells (see [1]). But the dependence on arbitrary
analytic functions is realised there by means of some integral transformations and due to
this the application of these formulae is considerably complicated. Besides the main terms,
defining the essential parts of the stress-strain distribution picture, the formulae contain
many insignificant ones which cause different mathematical complications. Therefore it is
practically very important to simplify beforehand the system of equations neglecting the
small quantities which have no essential mechanical influence on the picture of stress-
strain distribution. For this purpose one can suggest different approaches (see [1, 5]). It is
worth noting that, in general, the different ways lead to different results. Below we shall
apply an approach for simplification of the system of equations of the shallow spherical
shell. We shall also use the method of expansion of solutions in the power series with respect
to the small parameter

£=— 0]

where R is the radius of the sphere. This method allows the reduction of static problems for
elastic spherical shells to the sequences of similar problems for the elastic plate, the thickness



On construction of approximate solutions of equations of the shallow spherical shell 993

of which is equal to 1. It is worth noting that similar approaches may be also used for any
shell, e.g. for cylindrical ones.

I

Let us consider the isometric coordinates on the sphere
0 0 .
¢= tgycosg,  n=lgssing,

where 6 and ¢ are the geographical coordinates. For the shallow spherical shell the co-
ordinate € varies inside the small segment: 0 < 6 < 6,. Therefore one can put

& = 30 cos g, n = 30sin ¢.

Further it will be more convenient to consider the following new coordinates

R .
= E() sin @. (8)

Then for the metric quadratic form we obtain the formula

X = Rf)cos

ds? = (2h)? (dx2 +dy?) = (2h)*dz dz, )
where
z = X+1iy, zZ=Xx-Iiy.
Now the system of equations of the elastic shell may be written in the following complex

form (see [1,2])

é 0

0 0
&(N1+iN2)+5§(N1‘iN2)+£(T1+T2)+X =0,
(10)

8
(M~ My —2iH)+ (M + M) = o(S, +iS5) = 2H(N, +iN) = 0,

z

S

!"‘)

i
(Sy+i82)+ (51 —iS3)+e(M, + M) 20T = 0,

i
-
P4

D

where X, X, and X are components of external loads,

aw,

Tl——T2+2lS:4ﬂ‘aZ—, Wl =u,+iu2,
. 8u1 5“2
T+ T, = 2(A+ w8, + 240 —4e(A+ pu, 0, = —+-—=,
0x 0Oy
: ou .
N{+iN,=pu 2§+W2-f—£W1 , W, = v, +iv,, (11)
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T =20 +(A+2u)—2elu,
(1

2uh 0
M, —M,—2iH = W
3 ¢z
A+ p)h fo, 0
Mo+ My = CE G e, gy = T
3 ax  Qdy

h{ o
S, +iS, = i(2i+ng),

6\ o0z
o 1fe @ ¢ e 0
=i, == +i-]
0z 2lox oy dz  2lox oy

Here we use the following notation: T; and T, are the normal forces, S is the shearing force,
M, and M, are the bending moments, H is the twisting moment, N, and N, are the trans-

verse forces, S; and S, are connected with the so called splitting forces @, and @, by the
formulae (see [1, 2])

4 4
S, = — S, =—0,.
I TAUY 2= 3% (12
Further
Wl = u1+iu2, W2 = Ul+ivz (13)

B 0u1+6u2 oW, oW,
YToax oy oz oz
oW, , oW,

x| dy T oz * az’ (13)

(14)

ovy  Ov,

2 =

where u,,u, and v, v, are the tangent components of the vectors u and v, respectively;
u and v denote the normal components of these vectors. We propose that the unit normal n
to the sphere is directed to the centre.

By substituting (11) into (10) we obtain the elliptic system of equations of the twelfth
order which may be written with respect to the real variables x and y in the following
form

00 0 0
yAu1+(l+u)——l+lgli~z: (uv,+(2l+3u)£) —fuu + X, =0,

ox  0x
yAu2+(l+u)%+lg—;—a (yuz+(21+3u)2—;) —&2uu,+ X, =0,
pAU+ P8, + e[2A0 +(2A+ 30, ] —4* A+ pu+ X = 0, (16
uAv,+(l+u)%—0x—2— 12u(%+vl)——e (1211“1 +(22+3u)g—§) —&*uv; = 0,
yAv2+(l+u)%%3— 12;1(2—‘;4- vz)—e (12uu2+(2/1+3u)%) —&*uv, =0,

pAY —12[20 + (A4 21)v] + e[24Au + (244 3p)0,] — 4e*(A+ pjv = 0.
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It is easy to derive the formulae expressing all solutions of this system by six functions
satisfying the equations of the form
AW—-K*W =10, (K2 = const)

But it is more convenient to use a procedure based on the power series expansions
with respect to the small parameter e.

v

If ¢ = 0 then we obtain two independent systems of equations which may be written in
the following form

o0 ov
”AulH'HH)(TIHa +X,=0,
691 ov

"oy
uAv—12[0, +(/1 +2up] = 0.

00, du

uAv,+(i+u)5;—12y(a?+vl =0,
00 0

uhos + (4 ) 22— 12u Y v,] = 0, (18)
ay dy

These systems of equations coincide with those for the plate the thickness of which is
equal to 1 (see [1, 2]). Therefore one can write down the formulae expressing in the exact
form all solutions of equations (17) and (18) by means of arbitrary analytic functions.

For equations (17) these formulae may be written in the following form (see [1, 2])

LU U,
1T ok ey M0
(19)
U, U, .,
U, = —
2T 8y ox
v= —v—~A — —20 AAU+ o
l—0o 2 (20)
where u?, u9, v° is a particular solution of the non-homogeneous equations (17),
U= [f ~@+2f(2) = 3(fo(2)+ f ()], (21)

24

U = lia[zf'?)—zf'(zn. @)
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Here f, and fare the arbitrary analytic functions of z and y is the arbitrary real solution of
the equation

24
A== 2 =0 (23)

All solutions of equation (23) may be represented by the formula (see [4])

o= Rel 10 [ 10 Jtoberyise o | [t = ) 24

where f, is the arbitrary analytic function of z, I, is the Bessel function of zero order with
the imaginary argument.

Therefore the formulae expressing all solutions of equations (17) contain three arbitrary
analytic functions fy, f, f .

Sometimes it is more convenient to represent the function U in the following form

U = AU, (25)
where

o(l — o)

_— R AP ,
U= ¢ ;<+16(1+ 2%+ 22— 2fo — 2o ). (26)

Formulae (20) may also be written in the form

20
b= 1= ()

l+¢
All solutions of equation (18) may be represented by the formulae

v oy

0r = ¥

VT oy
27

v oy

Dy = — =,

2Ty ox

1
P LN (28)

E
where V and i are the arbitrary solutions of the equations
|
AAV = —— 29
14 BX , (29)
Ay —12¢ = 0. (30)
Here
1 . (1—0)E

= —(A+2 = 31
BT E = L (1 20) G1)

The function V may be expressed by the formula

V = 8[zg'(2) + 2g'(2)] + 4[g6(2) +86(2)] + V7, (32)
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where g, and g, are the arbitrary analytic functions and V° is a particular solution of

equation (29).
Sometimes it is convenient to represent the function V in the form
V=AV+V°, (33)
where
V = 22(2)+ 2°g(2) + 280(2) + 280(2). (34)

All solutions of equation (30) may be represented by the formula
z a _
v = Re[gl(z)— [ a1t 1ol 01226~ 0 dt].
0

Therefore the formulae representing solutions of equations (18) contain also three arbitrary
analytic functions.

\%

Let us return now to equations (16) and try to construct the solutions of the form

a0 o)
u= Yy u®e& u, =Y uPX  (a=1,2),
K=0 K=0
- - (35)
v= Y K = Y 0K (@=1,2).
K=0 K=0

We suppose that u(?, u?, v{®, !9 is an arbitrarily given solution of equations (17)
and (18) which may be constructed by means of the formulae given in the previous section.
The formal substitution of (35) into (16) shows that the series (35) may satisfy equations (16)
if the following equations are fulfilled

20K gyt
HAUE 4+ (4 ) 2+ X0 = 0,
grR  5pE)
AU 4 (A + 1) a; +2 é’y +XP =0, (36)

pAV® — 12006 + (A + 200+ X P = 0,

0% o
A+ A+ p) a; — 12u(_;x +U(1K)) X% =0,

20% o
uAu(ZK)+(i+,u)a—;— 12ﬂ( gy +v‘2"’)+X‘5"’ -0, (37)

AU+ poP + XH =0,
(K=12...),



998 1. N. VEKUA

where
XE = KD (2543 W e
1= vy (24+3p) Ay AT
YK — k-1 (95 qut k-2
R
XP =242V 244308V — 42 + ' 2, (38)
A K- 1)

X = =120 23430 -
CX

A K= 1)
X = 1200 20430 52,
cy
XE = 230% Y 4 (224 300KV —4(d + k2,
(K=12...; u® =8 =B =K g ifK<0;, =12

For each fixed K equations (36) and (37) coincide with equations (17) and (18), respectively.
Therefore to equations (36) and (37) one can apply the methods of integration stated in the
previous section.

Suppose that we consider some linear boundary value problem A, for equations (16).
The corresponding boundary value problem for equations (17) and (18) will be denoted by
Aq. We shall also suppose that the right side parts of the boundary conditions do not depend
on the parameter ¢. It means that for problems 4, and 4, these ones are the same.

Let 49, 019, u® 42, v\®, v be the solution of the problem A, . If the series (35) repre-
sent the solution of the boundary value problem A,, then the solutions of equations (36)
and (37} are to satisfy the corresponding homogeneous boundary conditions. Therefore
the boundary value problem A, for the elastic spherical shell is reduced to the sequence of
the boundary value problems for the non-homogeneous systems of equations (36) and
{(37) of elastic plates with homogeneous boundary conditions. Using the formulae of
section IV the latter boundary value problems may be reduced to the problems for analytic
functions of one complex variable. It is worth noting that all these problems are of the same
type and may be solved using the method requiring repetitions of calculations of the same
kind.

Vi

For the shallow shell the parameter ¢ is very small and one can neglect the terms of
orders &"m > 2|. Therefore the sought solution has the form

el
u=u4eu® uy = u®P el uy = U e (9

{ 1
v = o4 eV, v, = 0@+l v, = o4 eni

i

We assume that '®, o9, 4@, u, v\?, ¥’ is the known solution of the boundary value
problem A,.
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According to (36)-(38) we will have the equations

0w v
,uAu“’+(/1+ps)——+i +XP =0

L G
HA + (04 ) +/1—~;7+X‘2”=0 (40)
ARY — 1200 + (A -+ 2y D)+ X = 0

a0 (au“)

,uAn‘”+(/l+u) —12

#oft) 4 2= 0

o050 outh
pAu‘“+(ﬁ+u)_—— 12/1(—5)]—+v‘“) X =0, (41)

pAuD + pfV + X = 0,
where

'Y
XV = --(2/1+3,u)~—8 — uvi,

X = -—(214-3;1)—«};—-'#0‘0’ 42)

X = 2400+ 24+ 309,

(0

XP = -2+ 3u)—»~ 1206,
(0
XM = -(2,3.+3,u)—~-~ 12uu,
(43)
XPO = 2400+ 22+ 306,
= o | duy oL — av(l)+5”(1)
! ox oy’ dy

We shall suppose that the external loads are absent, i.e. X, = X, = X = 0. The general
case may be always reduced to this special one. Therefore one can put uf = u§ = u® = 0,
v° = 0 and according to the formulae of section IV, the solution of the problem 4, may
be represented in the following form

o _0A0_ U, 3D aU,

i e P
o 120 (44)
I —— AAD — AAAT,
l—0o 240
oAV oy AV oy
0) __ ¥ (0) v
T Ty T Ty e
(45)
SO AT+ 2(1+0)B

'Z ANV,
B AA
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where
U=:—Gg%ﬂx+]4;fﬂ&7+?ﬂﬂﬁ—d& (46)
Uy = 1= =5 (7)
V =228+2%g+2p,+12g,. (48)

Here fo.,/, g0, g are analytic functions, y and y are solutions of equations (23) and (30).
According to (42) and (45) one can write

‘J
X = o (ao AV + a, ANV )+ /“y'l’

X0 = ,ff(aoAV+a1AAV)~% (49)

XU = boAV +b,AAV.

XP = —(;}(i-(cOAU +c,AAU +c2AAAl7)+;%(12uU o
X 'y
W _ 0 B 3 ~ O
X5’ = =(coAU + ¢ AAU + c,AAAU) — —(12pU ), {50)
dy ox
X = d,AAU +d,AAAT.
where
224+ 3u)(1 +0)B
to=Witw, ay= 2 TINEAD
48 (1 B
by = —244, b, =2A+3u+ A~(T;—G)
(24+3)(1 -2 G
c A+ —20)
Co= —12pu, = (2)&3/1)?1? Cy = w—él‘%&a —,
246 Al —20)
do = 2/1’*‘3/1,—\_'* 1 = -—*1*2—0’_¥

One can easily find out that a particular solution of nonhomogeneous equations (40)
and (41) may be represented by the formulae

R 1y
I ATy — Y
uy ax(a0V+a1AV) 024y’
& = i a4~ Y 52)
§ (a0 +a )+12 Fs (

o' = A(be + b AV);
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0
o = —(c0U+c1AU+c2AAU)+ U, +5 AU* ,

0
vV = ay(coﬁ-{-c AU + L AAD) + — (U + ZAU*)’

u® = d’0[7+ d’IAU + d’zAAﬁ,
where

6— 130+ S5¢2 +40*

= — 1 N =
do (t+o); a; 24(1—20) ,
3—70+106* —-8¢?
b/ - _ I
(V] g, bl 24(1_20_)2 5
, ! 2(1-20) . 2—90+60?
CO = —do = — =

_ 3-20)(1-20)

“2 240

I - 8290 +305% +84°
te 21—06)X(1=20) °
7= _3-120+40?

2T 240

1001

(54)

If we now add to the particular solutions (52) and (53) of equations (40) and (41) the
general solutions of the corresponding homogeneous equations, we obtain the formulae

uf!) = %_V;_@;I; +ull,

W = Z_f_%+v(ll)"

Y = gf+gw+ o

uh = —Z+MAZ+14“",

E

(55)
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where

(P 2(1+ ){Z(f)“*‘zd’ 1¢0+¢’0)]

i
W, = ﬁj‘—(zcb—zcb), (57

Z=zP+3¥+¥,+P,.

Here ¢y, ¢, ¥, and W are the arbitrary analytic functions of z, ¢ and w are the arbitrary
real solutions of equations
A(’D_Tgi(p =0, Aw—12w = 0.

We are to mention that functions u{*”, ug?”, u" {1, o4 »'V)" are known since they
are expressed by the solution of the boundary value problem A, (we have supposed that
the solution of this problem is known). Therefore each of formulae (55) and (56) depend on
the three arbitrary analytic functions.

It is obvious that the homogeneous boundary conditions for functions u{", us", u'?,
o, v, vV will be reduced to the definite non-homogeneous boundary conditions for
analytic functions contained in formulae (55) and (56).

There exists a wide class of boundary value problems for which the corresponding
boundary conditions are separated into two groups in the following manner. One group
of boundary conditions contains three functions u,,u,,v and the other one contains
vy, U5, u. The boundary value problems of this kind, if we are to find the approximate solu-
tions of the form (39), are split into two independent boundary value problems. Each of
them is reduced to the boundary value problem for three analytic functions. This fact,
obviously, facilitates the necessary mathematical calculations.

If we use the formulae giving representations of solutions of the initial equations of the
spherical shell, we obtain the boundary conditions which contain all six analytic functions.
These boundary value problems do not split, in general, into independent ones with less
than six sought analytic functions.
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Abcrpakr—HoBas Teopus ynpyrux o60JI0ueK IPMBOAUT K CHCTEME LIUNITUYECKUX YPAaBHEHMH nBeHaana-
Toro niopsaaxa /cM, U, H. Bekya ‘“Teopus TOHKHX ITosIorux 060104ek nepeMennoi Tomuuns’’. Tp. TOunuck.
mat. uH-ta AH I'py3z CCP, 1965/. [Ins cnyyas chepuyeckoit 060I0YKH, PEIUEHHS 3THX CUCTEM ypaBHEHHH
MOXHO TOMHO NPEACTABUTH B BUJE WIECTU GYHKUMH, YAOBIETBOPAIOIINX ypaBHeHuaM Tuna Viw +k 2w = 0/
i=1,2,3,4,5/, rae COOTBETCTBEHHO k12, k22, k42, k 5>—HeWCTBUTEIIbHBIE IIOCTOSAHHBIE, k 32—KOMILIEKCHAS
MOCTOSIHHASA, W;, W3, Ws, Ws—OCHCTBHTENbHBlE (QYHKUMH, Ws—KOMIUIEKCHast (QyHKuMA. 3TH QyHKUMM
MOXHO BBIPa3HTh LUECTHIO INPOU3BOJIBHBIMH AHAJIMTHYECKUMH (QYHKUMAMH OHOM KOMILIEKCHOM NEPEMOH-
Hoit. [Ina momorux cepuyeckux 060sI0YeK MOMy4YeHHbIE GOPMYJIBI 3HAYUTENBHO ynpoluarTcs. ToTxe
MEyOZ MOXHO, TaKXe, WCIONBL30BATh IS DEIUEHWS YMPOIUEHHBIX YPABHEHHN MOJOrMX ChepHuecKux
obosouek.



